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PREFACE
This Memorandum is a result of RAND's continuing study of

Satellite Meteorology for the National Aeronautics and Space Ad-
ministration under contract NASr-21(07). To achieve more realism,
the authors are extending their previous study of isotropic and
anisotropic scattering in slab geometry to shell geometry. They
wish to be able to assess quantitatively the effects of sphericity
on radiation fields. The ultimate aim of this study is to more
fully exploit the mathematical and computational capabilities of
the modern digital computer in the study of radiative transfer in

planetary atmospheres.
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S
SUMMARY ./,/)"'/

The invariant imbedding equation for the scattering function
for shell geometry is a nonlinear partial differential-integral
equation, and its numerical solution presents difficulties.

A simple method for integration of the above equation is
presented. Integrals are approximated by finite sums using Gaussian
quadrature, and partial derivatives are approximated by linear com-
binations of functional values. The original problem is approxi-
mated by a large system of ordinary differential equations with

known initial conditions.

Requisite auxiliary constants for numerical differentiation

H
1

are given, as are the results of some trial calculations for the \
case of conservative isotropic scattering. Noteworthy differences §

between slab and shell geometry are observed, especially with grazing \

angles.
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I. INTRODUCTION

Of current interest in radiative transfer is the problem of
. . . . . (1-3)
diffuse reflection by a medium having a spherical geometry.
When conical flux of net flux m per unit normal area is incident on

a spherical, hollow shell of inner radius a, and outer radius z,

the equation for the scattering function is

ds8(z,v,u) 1 - v2 oS , 1 - u2 3S 1 1 v2+ u2 S
+ —+— =2+ (= +=)s - =
oz vz ov uz du v u 22 z
v u
(L
1 1
1 du’ 1 dv’
= 1+ES s(z,v,u’) S5 +§IS(Z,V’,U) dr
0 0

where A is the albedo for single scattering, and u and v are the
cosines of the incident and reflected angles, respectively. This is
an integro-differential equation, in which partial derivatives with
respect to z, v, and u occur, and integrals over v and u are present.

The initial conditions are

S(a,v,u) = 0, (2)

for a perfectly absorbing core. The S function is symmetric in the
arguments u and v.

To solve this problem with the use of a digital computer, we
wish to replace Eq. (1) by an approximate system of ordinary differ-
ential equations. We choose to have z be the independent variable.
Our first task is to obtain formulas for the estimation of the deriv-

atives of S with respect to v and u.




II. ESTIMATION OF DERIVATIVES

Consider the function f(x) which is evaluated at the N roots,

(4)

X, of the shifted Legendre polynomial of degree N. We wish to
approximate the first derivative of f evaluated at one of the roots

by means of a linear estimator

p s a (1) _
£/(x,) == Zaj f(xj), i=1,2,...,N. (3)

We require that formula (3) be exact for all polynomials of degree
N-1 or less,

N-1

£(x) = Z a, %<, (4)
k=0

We then have to solve the N linear algebraic equations in the N

i i i
unknowns, afl), aé ), ooy aé ),
N
k-1
:E: xk O/{1) K x. 2 k=0,1,...,N-1, (5)
j i
j=1
or
N
-1 a§i) = (k-1)x1;'2, k=1,2,...,N. (5%
j=1

Here, i is a parameter which may take on the values i=1,2,...,N.

Note that the matrix of coefficients {x -1} is the Vandermonde

k
3

matrix, the inverse of which is given in Appendix 6 of Ref. 4.




Let {yjk} be the inverse matrix. Then the solution of Eq. (5’) is
given by

N

(1) _
SRR DEFEN ©

k=1

where

k=2
by = (k-D)x 7, k=1,2,...,N. (7)

We refer the reader to Ref. 4 for the method of calculation of the
elements of the inverse matrix and for the numerical tables of these

elements.

(1)

The values of the coefficients qj have been calculated, and

they are given in Tables 1, 2, and 3, for N=5, 7 and 9, respectively.

i=1
~Ce1C134081E G2 0e15403904E C2 —-0+80G870874E 01 0.395207982E
-0411U35337E 01
i=2
~0e19205120E 01 -0+15167064E 01 0448055C13E 01 ~C+18571160E
0+48883323E-00
i=3
0e60233632E 00 =0428707765E 01 -0435527137E=14 0428707765E
-046C233632E 00
i=4
-0e48882323E-00 041857116CE 01 =~Ce48055013E 01 0e15167064E
Ce19205120E 01
i=5
0e¢11035337E 01 =0e39207982E 01 0e8C0870874E 01 =0e15403904E
0Cel0134C81E 02

Table 1. The coefficients a§l) for N =5

01

01

Cl

01

02



i=1
-0e191326364E 02
~0e73554C54E 01
i=2
~0e30774C01E 01
0e27743267E 01
i=3
073876691E 00
-0e246329939E 01
i=4
~0e36940283E~00
0¢43048331E 01
i=5
0e¢29621352E-00
0e97174703E 00
i=6
~0e37784329E~00
-0e94826608E 01
i=7
0410536210E 01
0¢18345136E 02

0e30166068E
Ce3703790SE

~-0e32947313E
~0e13485609E

-0437433740E
0410951925E

0e14803137E
~0e14803137E

~Je10951529E
0e37433740E

Cel3485609E
0e32947313F

-0«37037909E
-0.30166068E

02
01

01

Cl

01
01

01
01

C1
01

01
02

~0+18345136E 02
-01053621CE 01

Ce54826608E 01
0e37784329E~00

=Ce97174703E CO
~0e29621252E~00

~0e43048321E 01
0¢36940283E-00

0e424639939E (1
~047387863%1E 0O

~Ce27743267E (1
Ce3C774001E C1

0e735540C54E 01
0e19136364E 02

0+12020668E C2

~-0649141384E C1

0e56413488E C1

~0e99475983E~-13

~0.564134868E 01

Ce49141384LC O1

-0.12020668E C2

Table 2. The coefficients a§l) for N =7




i=
-0e3089G183E 02
-0e16624325E 02
-0e1(328869E U1
i=2
—Je46321847E 01
0e58950087E 01
0e33623594E-00
i=23
0e599779608E 00
—0+46474C57E Q1
-042238380CE-00
1 =4
-0e41927865E-20
Oeb6T704L4STALE 01
0e2C889316E-00C
i=25
0e25654308E-~00C
0eb568434159E-11
-0e25654308E-00
i =6
~0e20889316E~00C
~0e67044574E 01
0e41927865E-00
i=7
Ce22383800E~-00
0e46474C5TE 01
-099779608E 00
i=3
~0e33923594E-00
-058950087E 01
Ue46321847E 01
i=9
0e10328869E
CelE634325EC
0e308B%9183E

01
02
02

0e8494626C2E
Ue11463903E

~Ue5554C647TE
~0390772€6E

-051953604E
0e27969636E

0.17238123E
-0430840075E

-C0e97080200E
0e56T7T44949E

0«76033820E
Ve72470224E

~0.798120C6E
-~0e90706996E

0e11961277E
0.88594615E

-0e36223711E
-Ue23006713E

02
02

00
01

00
GO

00

n
w

01
01

01
02

-0e31847722E
~Ce71444762E

529632E
856884F

15
2
3

O
Ce2

-0e19666417E
-0416303335¢E

~0452755643E
016267280E

0e22877170E
~-0e22877170E

-016267280E
0452755643E

0.,16303335E
0619665417E

-0.23856884E
-0e15529632E

0e7144476A2E
0.31847722E

02
0l

c2
cl

cl
n1

01
01

01
01

01

01
02

01
02

0.22009713E
0e36223711E

~CeB885G5461EE
-0.11961277E

0.90706996E
0e79812006C

~0e72470224E
-0.76033820E

~0e¢56744949E
0.537080200E

C+30840075E
-0.17238123E

~0627969636¢E
0e51953604E

0e39077266E
0e55540647E

-0411463908E
-0e49462602E

Table 3. The coefficients a§1) for N = 9

02
C1

el
C1

1
00
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oe

01
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01
01

01
01

01
01

02
02




This method for the estimation of derivatives was tested on the

2 - -
following cases: f(x) =1, X, X , ees, x6, 1-e X, l - e fx

>
sin 2mx/3. The results were excellent for the polynomials and for
the case 1 - e-x, with accuracy to six decimal places. Accuracy to
two decimal places was obtained for the function 1 - e-Ax. For the
final test case, four to five correct figures resulted. The most
unfavorable trial was that for £(x) = 1 ~ e-4x, a function which

rapidly decreases, then levels off, so that its derivative is at

first large, then nearly zero.




IIT. APPLICATION TO THE SPHERICAL SHELL PROBLEM

We return to the computational solution of the S function of
Egqs. (1) and (2). We allow the variables v and u to take on only
the values {vi}, where v, is the ith root of the Legendre polynomial

@

of degree N, shifted to the interval (0,1 We then express S

as a function of one argument, z,
Sij(Z) = S(Z,Vi’vj)’ (8)

the subscripts i and j indicating the angular parameters. The deriva-

tives of S with respect to v and u are calculated using the formulas

N
[35_(_;_\:’1&)_] = 3 o® 52> 9
V=V, ,U=v
i j k=1
N
[——Q—A—HS gﬁv “] ~ }: af(l) 8,4 (2) - (10)
V=Vi’u=vj =1

The definite integrals in Eq. (1) are approximated to a high degree

(5)

of accuracy by the use of Gaussian quadrature. The integrands are
th . .1 (4)

evaluated at the roots of the N -shifted Legendre polynomial,

V.o i=1,2,...,N. The corresponding weights are W i=1,2,...,N.

We have our desired system of approximating ordinary differential

equations,




ds, .(z) 1 - vi N (i) 1 v2 N (i)
izt vz Zo’k i VTV .z % Sik
k=1 k=1
1 1 vi + v% Si'
+(—+=Ys,, - 55— (11)
v, v, ij 2 2 z
i j v, v
i
N w N w
k 1 k
_)\1+§ Zslkvk 1+-§ z: Sk_]vk ?
k=1 k=1
with initial conditions
= 2
Sij(a) 0, (12)

for i=1,2,...,N, j=1,2,...,N, and z = a.
We produced values of reflected intensities,
Si.(z)
ry(2) = 75— o (13)

for various values of the albedo ), and for various inner radii a,

and shell thicknesses

»
n

z - a. (14)

The computations were carried out on an IBM 7044 with a FORTRAN IV
source program.

For internal checking purposes, we compared our results for N = 7
against the results for N = 9, We also compared results using an
integration step size of 0.005 against those using one-half this size,

or 0.0025. We found complete agreement among the calculations.




We varied the inner radius of the shell, a = 100, 500, 1000, and
we compared the intensities, r, against the corresponding intensities

(6)

for the plane~parallel slab, which should be obtained as a = =,
The results are shown in Fig. 1. The function r is shown for the case
» =1, x = 3, for three angles of incidence, 13.0, 6.00, and 88.5
degrees. We see immediately that the curves for the shell geometry
always lie on or above the curves for the slab. 1In particular, the
curve for 88.5 degrees, with a = 100, lies as much as 50 per cent
above the curve for the slab. As the inner radius a is increased,
the function r for the shell approaches that for the slab., The two
cases are graphically indistinguishable for a = 1000. For the angle
of incidence 600, we have drawn in a dashed curve for a = 50. 1t was
produced from a calculation with N = 5, since the calculations for

N = 7 "blew up." This point requires further investigation.

We feel that this method for the numerical estimation of de-
rivatives is a useful one for many applications, due to its simplicity
and accuracy. In the near future, we shall produce S and r functions
for the shell problem by means of a perturbation technique. A com-

parison of the results will result in a better evaluation of the

present method.
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0.8
_ Inner radius a =
100
500
.7
0 1000, slab
=S Incident angle = —
\
4 ——13.0°
0.5 p
=A\ N
r ‘\\ <\ —
0.4 %\\4 1000, slab
\\i
\%; 60.00—
0.3
0.2
L ~—100
\\// 500
/—]OOO, slab
0.1 =
\’\S 88.5°
0 .
90° 60° 30° 0°

Angle of reflection

Fig.1 — Some reflected intensity patterns for shells with albedo
A= 1 and thickness x = 3, for various angles of incidence
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